A Multi-layer Recursive Residue Number System

نویسندگان

  • Henk D. L. Hollmann
  • Ronald Rietman
  • Sebastiaan de Hoogh
  • Ludo M. G. M. Tolhuizen
  • Paul Gorissen
چکیده

We present a method to increase the dynamical range of a Residue Number System (RNS) by adding virtual RNS layers on top of the original RNS, where the required modular arithmetic for a modulus on any non-bottom layer is implemented by means of an RNS Montgomery multiplication algorithm that uses the RNS on the layer below. As a result, the actual arithmetic is deferred to the bottom layer. The multiplication algorithm that we use is based on an algorithm by Bajard and Imbert, extended to work with pseudo-residues (remainders with a larger range than the modulus). The resulting Recursive Residue Number System (RRNS) can be used to implement modular addition, multiplication, and multiply-and-accumulate for very large (2000+ bits) moduli, using only modular operations for small (for example 8-bits) moduli. A hardware implementation of this method allows for massive parallelization. Our method can be applied in cryptographic algorithms such as RSA to realize modular exponentiation with a large (2048bit, or even 4096-bit) modulus. Due to the use of full RNS Montgomery algorithms, the system does not involve any carries, therefore cryptographic attacks that exploit carries cannot be applied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Layer Data Encryption using Residue Number System in DNA Sequence

In this paper, we will merge between the usages of DNA sequences and Residue number system in encryption systems. The message which is coded will be secretly impeded inside the DNA sequence. This merge will be leaded to perform multilayer encryption with different keys that can be used as a hash function versatile alternatively to increase the security and more flexibility, with less complexity...

متن کامل

Overflow Detection in Residue Number System, Moduli Set {2n-1,2n,2n+1}

Residue Number System (RNS) is a non-weighted number system for integer number arithmetic, which is based on the residues of a number to a certain set of numbers called module set. The main characteristics and advantage of residue number system is reducing carry propagation in calculations. The elimination of carry propagation leads to the possibility of maximizing parallel processing and reduc...

متن کامل

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

Efficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS

Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...

متن کامل

Efficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS

Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.07561  شماره 

صفحات  -

تاریخ انتشار 2018